
WASHINGTON UNIVERSITY 
DEPARTMENT OF PHYSICS 

LABORATORY FOR ULTRASONICS 
St. Louis, Missouri 63130 

“Quantitative Non-Destructive Evaluation of Composite Materials Based on Ultrasonic 
Wave Propagation” 

Semiannual Progress Report: March 15,1986 - September 14, 1986 

NASA Grant Number: NSG-1601 

Principal Investigator: 
Dr. James G. Miller 
Professor of Physics 

The NASA Technical Officer for this grant is: 

Dr. Joseph S. Heyman 
NASA Langley Research Center 
Hampton, Virginia 



- 2 -  

I. INTRODUCTION 

The research described in this Progress Report is aimed toward extension of the 
application and interpretation of specific ultrasonic nondestructive evaluation techniques. 
The first section of this Report deals with the application of Kramers-Kronig or general- 
ized dispersion relationships. The second section reports on our progress on an improved 
determination of material properties of composites inferred from elastic constant meas- 
urements. 

II. KRAMERS-KRONIG RELATIONSHIP 

Previous research has made use of generalized Kramers-Kronig relationships. L2  
One goal of our continuing research is to extend the generalized dispersion relationships 
to inherently inhomogeneous media such as composites. Experiments based on the tech- 
nique of ultrasonic phase spectroscopy introduced by Sachse and his colleagues3 have 
been carried out to evaluate the potential of this approach as a method for local character- 
ization of material integrity. (A portion of the funding for this research was derived from 
a NASA Graduate Student Research Fellowship awarded to Michael S .  Hughes.) 

A. THEORETICAL BACKGROUND 

Kramers-Kronig or generalized dispersion relationships, are useful in many areas of 
physics. Our studies are based on the following form of these equations, 

where Kl(o) and K2(o) are the real and imaginary parts, respectively, of the dynamic 
compressibility K(o) . Writing the ultrasonic wave vector as o/C(o) + ia(o) = k, we 
identify C(o) as the phase velocity and a(a) as the attenuation coefficient for the wave 
inside a specimen, as observed in transmission measurements. The effect of a specimen 
on the incident wave can be represented by a phenomenological compressibility K(o) 
obeying Eqs. (1) and (2), which can be used to define the relationship between attenua- 
tion and dispersion. To do this we use the dispersion relation for acoustic waves which 
we write as 
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This leads to the following pair of equations, 

and 

where p is the density of the material in which the wave is propagated. In principle the 
dispersion at a specified frequency can be computed from a knowledge of the attenuation 
at all frequencies by using Eqs. (2), (4) and (5). This computation would require the 
solution of an integral equation involving a(o) and C(O) . A closed form answer for 
C(O) in terms of a(o) seems unlikely. Conversely, if the dispersion is known at all fre- 
quencies, the attenuation at any specific frequency could be computed in principle from 
Eqs. (l), (4) and (5). However, for similar reasons this approach does not seem attrac- 
tive. 

It is possible to circumvent these mathematical difficulties by using an approxima- 
tion to the integrals in Eq.(l) and Eq.(2). Previous Reports have focused on experimental 
tests of a local approximation to these equations. Assuming that the attenuation and 
dispersion are sufficiently small and change slowly enough over the frequency range of 
interest, we have shown in previous Progress Reports that 

where 00 is some convenient reference frequency. 

Experimental evidence indicates that for some materials of interest the attenuation 
coefficient can be described approximately by the relation a(o)=po . This observation 
combined with equation (7) leads to the following approximate relationship between 
a(o) and C(o) , 

AC(o) = C(o)-Co =: -pin(%). 2G2 0 
n: 

A signicant umber of approximations are required to derive Eq.(8). As described our 
the September 1985 to March 1986 Progress Report a more direct test of the local 
approximation can be based on the equation 
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Tests of this form of the local approximation are the subject of the first section of this 
report. 

B. EXPERIMENTAL METHODS 

Data are acquired in the time domain using a Tektronix 2430 digital sampling oscil- 
liscope. Data analysis is based on the recently developed ultrasonic phase spectroscopy 
techniq~e .~  This method has been described in detail in our Progress Report covering 
September 1985 to March 1986. It provides the phase and magnitude of a pulse which 
has propagated through an experimental specimen. 

The phase data are used to compute the phase velocity of sound, C(o) , in the speci- 
men. This analysis is described in detail in the Report cited above. 

The magnitude spectrum is used for a qualitative evaluation of the data and to com- 
pute the attenuation coefficient as a function of frequency. During the current reporting 
interval a new procedure for the measurement of attenuation has been implemented in 
this Laboratory. The geometry used for this procedure is depicted in Fig.( 1) where the 
transmission coefficients at each water-sample and sample-water interface are shown. 
Data fiom the front wall reflection are used together with the reference trace data to com- 
pute the reflection coefficients as a function of frequency using the formula 

where Mh(  o ) is the magnitude of the frontwall reflection at frequency o and M,( o ) is 
the magnitude of the reference trace at frequency o . In practice the reflection 
coefficient Rw,,( o ) is nearly constant over the bandwidth of the apparatus. However, 
this observation, which is certainly true for materials exhibiting modest attenuation, may 
not hold in certain composites which exhibit significant attenuation and dispersion. 

This reflection coefficient may also be rewritten in terms of physical parameters 
which characterize the water and the specimen. In terms of characteristic impedances, 
the particle velocity reflection coefficient Ru1+2 and transmission coefficient 'PI+* for 
particle pressure wave going from medium 1 to medium 2 are 
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Figure 1 - Diagram of water-sample interfaces encountered by a sound pulse dur- 

ing acquisition of a sample trace. The density of sample is denoted by ps and the 

density of water by pw . The velocity of sound in the sample is denoted by C, 

and in water by Cw . 
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where Z1 is the characteristic impedance of medium 1 and Z, is the characteristic 
impedance of material 2. The corresponding pressure reflection and transmission 
coefficients are 

and 

From Eqs.( 1 1) thru (14) one obtains the power reflection and transmission coefficients, 

and 

where the minus sign in Eq.(15) indicates power flow in the negative direction with 
respect to the incident pulse. Typical values of these coefficients are shown in Table 1. 

For our purposes material one will be taken to be water and material two will 
represent the sample. From Fig.( 1) we see that 

Ada)  = T,,sTs~wTw~sTs+wAi(a) (17) 

where Ai(a) is the initial, or uncompensated, magnitude and Ada) is the final, or com- 
pensated, magnitude. Equation (17) may be rewritten as 

~da) = [ ~ w + s ~ s + w ~ ~ ~ i ( ~ ) *  (18) 

An inspection of Eqs.(12) and (14) reveals that Eq.(18) reduces to 

independent of whether one is using the particle velocity or the pressure transmission 
coefficients. We further note that using either Eq.( 11) for the particle velocity reflection 
coefficie.nt or ~ q . ( i 3 )  for the pressure reflection coefficient oce can write 

Consequently we have, 
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which gives the compensated magnitude in terms of the uncompensated magnitude for 
either the particle velocity or pressure. 

Once the compensated magnitude Aka) is known, a log subtraction technique is 
used to compute the attenuation using the magnitude data. It is important to note that the 
positions of the frontwall of the sample and the stainless steel reflector should be the 
same at the time of acquisition of both the frontwall reflection data and the reference 
data. The correct configurations are shown in Fig.(2). The top of this figure shows the 
placement of transducer and the stainless steel reflector during acquisition of a pulse 
which propagates through water path only. These data are used as a reference trace to 
remove instrumental phase shifts and to compute Ai(a) . Henceforth this will be referred 
to as the reference pulse. The middle of this figure shows placement of sample, reflector 
and transducer during acquisition of a pulse which is used together with the reference to 
compute the phase velocity of sound in the sample. The trace acquired in this 
configuration will be referred to as the sample trace. The bottom portion of the figure 
shows sample placement during acquisition of a trace which is used to compute transmis- 
sion coefficients of the sample. This trace will be referred to as the frontwall reflection 
trace or the frontwall reflection. 

During data acquisition it is essential that these data traces be obtained with the 
specimen and reflector placed as shown. Failure to do so may produce incorrect esti- 
mates of sample attenuation. This observation is illustrated by the following example. A 
sample of uniaxial graphite-epoxy was insonified at incidence parallel to the fibers. Sam- 
ple thickness was 3cm so that the distance between the frontwall of the sample and the 
front of the stainless steel reflector was approximately 3.5cm during acquisition of the 
sample trace. The relative positions of the transducer, sample and reflector were as 
shown in the middle of Fig(2). However, during acquisition of the frontwall reflection 
the sample was positioned as shown in the middle of Fig.(2), not in the position shown in 
the bottom of Fig.(2). 

The outcome of this measurement is shown in Fig.(3a). The apparent attenuation 
(signal loss) exhibits a bizarre behavior. This incorrect result arises because of the use of 
an inappropriate estimate of the reflection coefficient. The ultrasonic beam varies sub- 
stantially as a function of distance from the transducer. If traces acquired at different dis- 
tances from the transducer are used in the same computation this effect can produce an 
apparent attenuation that has little connection with the physical properties of the speci- 
men under study. The result of the correct measurement procedure is shown in Fig.(3b) 
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Figure 2 - Diagram indicating the placement of sample and reflector during acquisition of reference 
trace (top), sample trace (middle) and sample frontwall reflection (bottom).. 
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Figure 3 - The top curve shows an incorrect estimate of attenuation in a 3cm 

specimen of graphite-epoxy. This graph illustrates the result of incorrect place- 

ment of frontwall of sample during acquisition of a frontwall reflection trace. 

The bottom graph shows the correct attenuation data. 
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in which the relative placements were as shown in Fig.(2). 

The results to be discussed in the next section were 
five data sets acquired in the time domain. Each of these 

estimated from the average of 
time domain data sets, in turn, 

were computed from the average of 5 Tektronix 2430 traces with the oscilliscope set to 
perform 256 averages internally before outputing the data. This procedure was used to 
obtain all of the graphs presented in Section I of this report. 

One additional methodological consideration concerns traces acquired from thin 
samples. These frequently contain large specular echoes from both the front and back 
walls of the sample. If these echoes are included in the segment Fourier transformed the 
resulting phase and magnitude data are hopelessly corrupted. Thus these echoes must be 
removed from sample data traces before data analysis can begin. This calls for some 
type of windowing of the data. In thin samples the choice of window position is much 
more difficult than it is in a thicker sample. 

C. RESULTS 

Data collected as described above were used to compute Kl(o) and K2(o) via Eqs. 
(4) and (5). The experimentally measured values of Kl(o) were then used in conjunction 
with Eq(9) to obtain a local approximation of the values of K2(a) . The result of this 
calculation for a 6.64mm graphite-epoxy composite specimen insonified at perpendicular 
incidence to the fibers is shown in Fig.(4). In this figure the local approximation, Eq.(9), 
is represented by diamonds. The crosses represent the result of direct experimental 
measurement. Standard errors for the local approximation are represented by the two 
dashed lines. The relatively large magnitude of these errors may be attributed to the fact 
that computation of the local approximation calls for the differentiation of noisy data. 
This point is discussed in detail in our Progress Report covering the period from Sep- 
tember 1985 to March 1986. We note that the two estimates agree to within the error 
bars of the local approximation and that the agreement is best at the center of the 
bandwidth of the apparatus (5.5MHz). It is also important to point out that this sample is 
thin enough to require the removal of front and backwall reflections from the time 
domain traces before the data may be Fourier transformed. As described in the Methods 
section this may be accomplished by use of an appropriate window function. The posi- 
tion of this window is chosen during the course of the data analysis and strongly effects 
it’s outcome. This point is supported by cornparision of Fig.(4) of the present Progress 
Report with Fig.@) of our Progress Report covering the period from September 15,1985 
to March 14, 1986. Both graphs were obtained from the same time-domain traces. The 
only difference between the two analyses used to obtain these results is the choice of 
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window position. Figure 4 of this Report shows the outcome of a more appropriate 
choice for the window position. 

A similar study was performed for the specimen of graphite-epoxy 3cm. in thick- 
ness insonified at perpendicular incidence to the fibers. Figure ( 5 )  shows the comparison 
of the prediction of Eq.(9) with experiment. The graph in panel a) shows the value 
obtained using the local approximation with standard errors represented by the two 
dashed lines. In panel b) the values of &(a) obtained directly from experimental data 
are presented with dashed lines to represent the standard errors. In the center of the use- 
ful bandwidth the two estimates agree to within the error bars of the direct measurement. 

In future research we will investigate dispersion in composite materials using the 
modified spectroscopy method described above. We will evaluate the range of applicabil- 
ity of the local relationships in these inherently inhomogeneous materials. The goal of 
these investigations is to extend the capabilities of ultrasound in nondestructive evalua- 
tion of lossy, dispersive inhomogeneous media. 

111. ULTRASONIC DETERMINATION OF ELASTIC 
CONSTANTS FOR HEXAGONAL MEDIA 

Sound propagation in media with hexagonal symmetry can be characterized by five 
independent constants. These constants can be accurately determined by the measure- 
ment of five independent ultrasonic velocities. Four of the five constants can be deter- 
mined by measurement of waves propagating parallel or perpendicular to the six-fold 
axis. Determination of the fifth elastic constant requires propagation of a wave at an 
angle with respect to the six-fold axis. In this Progress Report, we examine the error 
analysis for determination of this fifth elastic constant from measurement of a velocity 
propagating at an arbitrary angle with respect to the six-fold axis. We show that for 
media with a high degree of longitudinal anisotropy such as graphite fiber-reinforced 
epoxy improvement in accuracy may be obtained by propagation at an angle other than 
the conventional choice of forty-five degrees. Expressions for determination of the 
optimal angle are presented. 

Elastic constants of fiber-reinforced composites are known only approximately. 
Unlike the case of many naturally occurring crystalline materials, it is not usually possi- 
ble to specify a single set of elastic constants for a class of composites. Composites 
designated by the same generic name (e.g., graphite-epoxy) exhibit a range of values for 
the elastic constants. These values depend upon the characteristics of the fiber, the 
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matrix, their relative proportions, and related manufacturing parameters. In this Progress 
Report we discuss wave propagation in hexagonal media (e.g., in graphite-epoxy compo- 
sites) as an approach to the determination of elastic constants and hence material proper- 
ties. 

A. PHASE VELOCITY EQUATIONS FOR WAVE PROPAGATION 

IN A MERIDIAN PLANE 

In the Progress Report covering the period September 15, 1985 through March 14, 
1986 we discussed wave propagation in hexagonal media. Graphite-epoxy composites 
layed-up in a hexagonal close-packed (hcp) arrangement exhibit hexagonal symmetry 
and are thus transversely isotropic; that is, all material properties are independent of rota- 
tion about the stiff axis (Le., fiber axis). Therefore, we can study the entire phase velo- 
city surface by examining wave propagation in a meridian plane, which is any plane 
which includes the six-fold axis of symmetry. 

The matrix of elastic constants [ cj ] for hexagonal media with the six-fold axis 
aligned along the x1 axis (in the notation of the composites literature) and for wave pro- 
pagation in a meridian plane is 

c11 c12 

c12 c22 

c12 c23 

0 0 

0 0 
0 0 

c12 0 0 
c 2 3  0 0 
c22 0 0 

c22-(?23 
2 0 

0 0 c55 
0 0 0 

0 
0 
0 

0 

0 

c55 

The analytic expressions for the phase velocities in a meridian plane, using yf as the 
angle between the wave vector k and the six-fold axis of symmetry, are as follows. 
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The phase velocity for the pure shear mode is 

The quasi-shear phase velocity is 

I" ~22sin% + C11cos$ + ~ 5 5  - C, 
2P 

vqs= [ 
and the quasi-longitudinal phase velocity is 

The symbol p represents the combined (fiber plus matrix) density of the graphite-epoxy 
sample. 

B. MEASUREMENT OF HEXAGONAL CONSTANTS 

Since a medium with hexagonal symmetry is characterized by five independent 
elastic constants, we must measure at least five independent velocities to determine the 
full set of constants. Four of the elastic constants are easily determined. 

For propagation parallel to the six-fold axis, the expressions for the phase velocities 
given in Equations (22) through (24) reduce to simple forms. The velocity of the longitu- 
dinal mode (V:) provides the stiffness of the six-fold axis 

c11= P [vi) 
with fractional error given by 

The shear velocities (Vl) are degenerate for propagation parallel to the six-fold axis, thus 
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propagation of a shear wave of arbitrary polarization provides 

c55 = P [ V l ]  

with fractional error given by 

C55 can also be determined by propagation perpendicular to the six-fold axis. The velo- 
city of the shear mode which is polarized parallel with the six-fold axis (denoted by 
V&)(see the quasi-shear mode of Equation (22) with w = 90') provides 

c55 = P [ V&] 

with fractional error similar to the expression in Equation (28). The symmetry 
represented by Equations (27) and (29) is an example of the well-known result4 that one 
obtains the same value for the phase velocity under an exchange of the propagation and 
polarization directions. 

The longitudinal mode propagating perpendicular to the six-fold axis (VL) supplies 
the transversely isotropic longitudinal elastic constant, C22, via 

with fractional error given by [z]2=4[a] 2 . 

The other shear mode propagating perpendicular to the six-fold axis is polarized 
perpendicular to the six-fold axis (denoted by V&). Measurement of this velocity pro- 

vides (&, which is ((222 - C23)/2. Thus, using C22 from Equation (22), we determine the 
fourth elastic constant G, 

with total error given by 

The remaining elastic constant represents a "matrix-fiber" interaction in a composite 
material. In the notation we are using, the fifth elastic constant is C12. Inspection of the 
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velocity Equations (22-24) shows that the pure shear mode is independent of this con- 
stant. In addition, the quasi-longitudinal and quasi-shear modes are independent of this 
constant for two special angles, y = 0" and y = 90". Thus, we can determine this con- 
stant only by measurement of a quasi-longitudinal or quasi-shear velocity for propagation 
neither parallel nor perpendicular to the six-fold axis. 

The choice of the angle at which the measurement should be made appears to have 
been heavily influenced by a paper by H.J. M~Skimin.~ In that work he measured the five 
elastic constants of single crystal cobalt. At the time this paper was submitted (June 
1954) McSkimin was apparently unaware that the phase velocity was known analytically 
for any angle y. The analytic solutions had been published by Seeger and Sch&k6 in 
1953 and, independently, by M.J.P. Musgrave7 in 1954. The phase velocities do reduce 
to fairly simple forms for y = 45", which were obtainable without knowledge of the com- 
plete solution for any angle y. McSkimin obtained these forms from Cady's book on 
piezoelectricity.8 Many other researchers have followed McSkimin's precedent9> lo so 
that today w = 45" is the usual choice for measuring C12. However, our calculations sug- 
gest that 45" may not be the optimum choice, at least for graphite-epoxy composites. 

One approach would be to perform a large number of velocity measurements, using 
many different angles with respect to the six-fold axis. From this over-determined set 
one would then obtain average estimates of all five elastic constants. However, prepara- 
tion of so many samples is rarely feasible. Indeed, one would prefer to determine the 
value from a single measurement at some optimum angle. 

Consider a sample cut as suggested in Figure 6, with opposing faces flat and parallel 
and with the six-fold axis at some angle w with respect to the surface normal. The direc- 
tion of the wave vector will be perpendicular to the surface. The velocities of the quasi- 
longitudinal and quasi-shear modes are then given by the following equation in y~ and the 
elastic constants of Equations (23) and (24). 

a f -\la2 - 4b + 4(C12+ C55)2sin%ycos$ 
2P v& = 

qs 
(34) 

where for convenience we have set 

and 

Equation (34) can be inverted, to obtain an expression for the desired elastic constant, 
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Uni-axial Graphite Epoxy Sample 

Fibers 

Figure 6 - Geometry of Sample 
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c12 - b - ayT2 + p y 4  c55 
siny cosy (37) 

Here a positive sign was chosen when taking the square root appearing in the numerator 
of the first term, so that C12 may be positive. We note that there is an interrelationship 
between the quasi-longitudinal and the quasi-shear velocities. In Equation (37), V 
represents the velocity of either mode. This seeming ambiguity arose in the derivation of 
Equation (37). At one point in the derivation, all the dependence on velocity (either 
mode) is contained in a single term. At that point, we have 

[a - 2pv2] terms independent of 
={ mode chosen 

For the quasi-longitudinal mode, [a - 2pV& is less than zero, while for the quasi-shear 
mode that same term is greater than zero by the same amount. Squaring the term 
removes the difference in sign, so that Equation (37) is "independent" of the mode 
chosen. 

We now have a measurement of the fifth elastic constant, obtained at some angle y. 
To make an estimate of the uncertainties in this result, we apply simple propagation of 
errors,ll. l2 neglecting any uncertainty in the density as being relatively unimportant, and 
assuming no cross-correlations.13 The uncertainty in C12 is given by 

This result is quite general, and is useful despite the apparent complexity, 
r 

+ [~2~sin%ycos$ + C ~ ~ C O S %  - ~ v ~ c o s ~ I ~ ~ & ,  

+[C22sin%y+2C55sin%ycos%y+C1 lcos%y-pV2-2/ sinv 1 1 cosw I db-ap\12+p2\ 3 ocss 
1 4 2  2r 

where ocI1, ocu, and oc,, are given by Equations (26), (31), and (28), respectively. 
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In order to proceed let us assume that the fractional error in measuring any velocity 
is approximately constant for all desired measurements. Equation (40) can then be writ- 
ten as proportional to the fractional error in the velocity, with a complicated propor- 
tionality constant which depends on the measured elastic constants. For comparison with 
a simpler case, the proportionality constant is simply equal to 2 in Equations (26), (28), 
and (31). 

We can easily evaluate the resulting expression numerically. In this Progress 
Report, we will use a set of elastic constants reported by Kriz and Stinchcomb? for type 
AS-3501 graphite-epoxy, as input values to our equations. These constants are summar- 
ized below. 

C11=16.1 X 10 10 N 
m2 

C12 = 0.650 X 1O1O E 
m2 

10 N 
,2 

C22= 1.45 X 10 

C23 = 0.724 X 10" 

C55 = 0.710 X 10" 

2 

2 
Figure 7 presents the estimated fractional error in Cl2, calculated as a function of 

the angle between the surface normal and the fibers, assuming a five per cent fractional 
error in the measurements of the velocities. Since the velocities are independent of C12 
at w = 0" and w = 90°, Equation (40) diverges as expected as those angles are 
approached. The overall magnitude of the fractional error is quite large, with the 
minimum uncertainty on the order of one hundred per cent. Thus we note that the fifth 
elastic constant is indeed difficult to determine precisely. 

One significant feature of Figure 7, summarized in bar graph fashion in Figure 8, is 
that the minimum error ( i.e., minima in ocI2 ) lies far from the traditional measurement 

angle of 45". Indeed, for this material one can achieve an improvement in precision of 
more than a factor of two by measuring near w = 77" rather than at w = 45". We note 
that the location of this optimum angle is a function of C12, the very quantity we are 
striving to measure. Fortunately, the location of the minimum exhibits a fairly weak 
dependence on C12, so that a rough estimate of C12 will permit the experimenter to make 
an improved determination of C12 relatively close to the optimum angle. We suggest that 
there may be similar "optimum angles" for other hexagonal materials, so that 
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Figure 7 - Fractional error in determination of C,,as a function of the 
angle at which the measurement was made relative to the fiber axis. A 
uniform fractional error of five percent in the measurement of all 
velocities was assumed. 
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consideration of the type of calculations made here may prove more generally useful. 
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